

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN = 2345-3877

A Cooperative GPU-Based Approach for Alert Aggregation

 Masoud Narimani Zaman Abadi1, Alireza Nowroozi2, Payam Mahdinia3

Keywords: Alert aggregation, alert correlation, security alert, graphics processor, time window.

1. Introduction

Alert correlation analysis is one of the core

functions of security operations center, which

can avoid false and duplicate report, contribute

to find some potential threats and improve the

efficiency and security of the network [1]. The

performance of the system should be such that it

can process incoming alerts online. Similarity-

based algorithms are a subcategory of correlation

algorithms which is widely used. It utilizes

similarity metrics to correlates alerts. Techniques

used in this subcategory are classified as filtering

or aggregation. Filter-based techniques perform

fixed task on each alert and according to the

IT Security Institute, ICT Department1,2, Electrical and Computer Engineering Department3

MalekAshtar University of Technology, Tehran1, 2, Isfahan University of Technology3

narimani.msd@gmail.com1, nowroozi@mut.ac.ir2, p.mahdiniaalvar@ec.iut.ac.ir3

Abstract: - Alert aggregation classified as a similarity-based alert correlation which fuses and clusters

similar alerts. Alert aggregation increases meaning of alerts and reduces incoming alerts simultaneously;

this process requires lots of computing resources. Limitation of computing resources, like CPUs, makes

such systems not satisfactory. Graphic processing units (GPUs) are a potential option to solve this. In

recent years, GPUs have been used in various fields, however, due to the dynamic nature of processing

and data structures in alert correlation, correlation algorithms have not been implemented on GPU. In

this paper, we present a cooperative model that uses the processing power of graphics processing unit

(GPU) to aggregate security alerts and transform the time complexity from the second power to the

linear one. Evaluations illustrate the proposed method for 600,000 alerts in time window will improve

the processing speed by 26 times. In the proposed algorithm, in spite of main algorithm, the system

performance at best, average and worst cases are the same.

http://www.ijocit.org/
http://www.ijocit.ir/

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 417

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

acquired results make decision about alerts. Alert

verification and prioritization are in this class.

The goal of aggregation technique is fusing or

clustering incoming alerts. This technique

utilizes similarity metrics and put similar alerts

into one category. The algorithms that use

aggregation technique require a lot of computing

resources and this restriction is as a bottleneck in

correlation system [2]. The time complexity of

aggregation algorithms is O(r2) in which r is the

rate of input alerts. With the increase in

processing power, either it can process alerts with

a higher rate or it can keep more alerts in the alert

queue and these improve quality of correlation.

Graphics processors have developed very

rapidly in recent years. On each new generation,

additional features are introduced that move the

GPUs one step closer to wider use for general

purpose computations [3]. The use of a GPU

beside a CPU to perform general-purpose

computations is known as General Purpose

computing on Graphics Processing Units

(GPGPU). Lots of research have been done to

improve the performance of variant algorithms in

GPUs. This paper presents a prototype for CPU-

GPU cooperative model that can integrate the

computing power of CPU and GPU to perform

alert aggregation more efficiently. In this model,

aggregation system selects best platform to

process alerts. The movement between CPU and

GPU platforms depends on the alert queue size.

Evaluations show that this prototype can

aggregate security alerts 26X faster than CPU-

based model when the alert queue size is 600,000.

The rest of this paper is organized as follow: First,

a brief discussion of related work around

correlation and GPU is given in section II. Section

III provides a template for serial aggregation

algorithm and a proposed template for GPU-based

parallel aggregation algorithm. Section IV

describes proposed model and finally, Section V

draws conclusions and outlines future work.

2. Related Work

Most of proposed solutions presented in

correlation field such as [4–8] are offline tools

that can be run periodically on a database of

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 418

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

alerts and cannot operate with good performance.

In addition, the solutions such as [9–11] that do

operate online have problem in performance and

are only able to operate in real-time on datasets

with a low alert-rate. The work described in [9]

considers the performance of alert correlation by

utilizing a Column-oriented Database and an In-

Memory Alert Storage in connection with

Improved Algorithms using Memory-based

Index Tables. Valeur in [11] uses a hash table to

perform the lookup in the state, but the problem

with hash tables is that when the table fills up the

performance of search and deletion decreases. In

addition, in Valeur model, indexes consume

valuable memory and can be costly to update.

The aim of [10] is to develop an automated alert

correlation algorithm using attack type graphs

which is suitable for deployment in a real-time

environments. [2] Implies to limitations of

correlation systems in terms of performance and

proposes to pre-filter information at the source.

Such a filter will reduce the amount of alerts

collected. To do pre-filtering two factors are

used: structural specifications and security

policy. This approach has two main drawbacks:

The first is the difficulty to maintain such

distributed filters, and the second one is the lack

of universality concerning security related events

on the systems. There are many works related to

GPU that utilize this processor to improve

algorithm performance, but there is not any

effort on correlating alert via GPU power.

3. Aggregation Algorithm

Alert aggregation is a class of alert correlation

that uses similarity metrics. This class of

correlation includes the fusion, session

reconstruction, thread reconstruction, focus

recognition, and multi-step correlation

algorithms [11]. The main feature of these

algorithms is need to time window. Time

window keeps incoming alerts at an alert queue

in order to process them later. In order to

implement an aggregation component, two

different functions are needed: a matching

function and a merging function. A matching

function takes two arguments: a set of related

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 419

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

alerts, and a single alert to be matched with the

set. The matching function compares the incoming

alert to be matched with all the alerts in the set (the

alert queue). If the alert belongs to the set (i.e., the

function’s similarity criteria are satisfied), then the

alerts in the set and the matched alert should be

aggregated and the function returns true. On the

other hand, if the incoming alert is not similar to

the alerts in the alert set, then false is returned and

alert is added to the alert queue. A merging

function takes as input a set of alerts that have

previously been matched by the matching function

and returns a hyper-alert representing the aggregate

of the set. If no aggregate can be calculated, the

function returns null. The alerts within the time

window are stored in a time-ordered queue. Serial

and parallel algorithms are presented in the

following sections:

A. Serial Algorithm

When a new alert arrives, serial algorithm

compares it with the alerts in the queue, starting

with the first alert in the queue and moves

towards the end of the queue.

Figure 1: Alert processing in serial mode

Figure 1 shows process. Upon finding a match,

the two alerts are merged, the resulting hyper-

alert replaces with the matched alert in the

queue, and the operation is terminated. If no

match is found after searching through the whole

queue, the alert is inserted into the queue, to be

considered for matching with future alerts. If the

rate of incoming alerts was r, the time window

has in average r*window_size alerts and the

system has to compare r*r*window_size alerts

per second. As a result, the time complexity of

the matching phase becomes O(r2). With this

time complexity, correlation system cannot

process alerts at a high rate [11]. Therefore, in

these conditions, the system is forced either to

reduce the algorithm details or to remove

additional alerts from input buffer; anyway, this

decreases the quality of the resulting output.

Window size is considered in [12] 120 seconds,

CPU Thread CPU Thread

ی

 ی
ی

 ی

ی

 ی

ی

 ی

ی

 ی

CPU Thread

Alert Queue

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 420

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

so it is susceptible to a big alert queue. Until the

alert queue size is less than a threshold,

algorithm performance is acceptable. However,

with growing size of the queue, the algorithm

performance is sharply reduced. Therefore,

researchers use various methods such as keeping

small window size or reducing the rate of

incoming alerts to hide the problem. The critical

part of this algorithm is the loop that compares

new alert with alerts in the queue.

B. GPU-based Parallel Algorithm

In our proposed approach, we have used GPU

parallel processing power to handle alerts.

Graphics processors have many cores that work

simultaneously and are capable to run thousands

of threads concurrently. This capability can

remove comparing loop in serial algorithm.

Figure 2 illustrates GPU-based parallel

processing. Here, the alert queue should be

transferred to device (GPU) memory. Each

thread is responsible for one alert in the alert

queue and has to process it.

Figure 2: Alert processing in parallel mode

Once host (CPU) receives a new alert, after pre-

processing it, shifts alert to device and introduce

it to device threads. The threads simultaneously

compare new incoming alert with the alert that

are responsible for. If a thread finds a match, it

calls merging function to aggregate two alerts.

Matching process is such that the new alert is

matched with no alerts or be matched with only

one alert. Therefore, upon detecting a matching

case in a thread, we can call the merging

function, because it sure which does not find any

matches at other threads. When all threads

terminate and do not find any matches, a flag

announces the status to the host. The host checks

the flag and if finds that no match occurred, adds

new alert into the alert queue.

CPU Thread

ی

 ی

ی

 ی

ی

 ی

ی

 ی

ی

 ی
GPU

Threads

CPU Thread

Alert

Queue

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 421

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

Figure 3: Pseudo code of the proposed model

With the arrival of a new alert, host creates a

kernel code – a code that executes on device -

and transfers control to the device. Device runs

kernel, which compares alerts in GPU, and when

finished, returns control to the host. In this step,

the host checks status flag. If the flag shows that

no match found, the host creates other kernel

Figure 4: Flowchart of the proposed model

code to add new alert into the alert queue located

in device memory. Control switching between

host and device imposes overhead on the system.

When the alert queue length is small, switch

overhead is significant, but when the queue

length exceeds a threshold, this overhead is

negligible and can be ignored.

Parameter alert_queue_ size, block_size, merge_flag, t1, t2

Global alert_queue

Aggregation (alert) {

Remove all ra: Alert from alert_queue where ra.queue_index

> alert_queue_size

Pass removed alerts to next correlation component

If (t1 < alert_queue_ size < t2)

Keep previous process state
Else if (alert_queue_ size ≤ t1)

If (previous process state is not serial)

Move the alert queue to host
Serial_aggregation (alert)

Else

If (previous process state is not parallel)

Move the alert queue to device

Parallel_aggregation (alert) }

Serial_aggregation (alert) {

For each a: Alert in alert_ queue

If (alert.attributes == a.attributes)

 Send a and alert to Merge_Template phase

Else

Add alert to alert_queue

 }

Parallel_aggregation (alert) {

kernel_compare_merge <<<alert_queue_size/ block_size,
block_size>>> (alert)

If (merge_flag is set)

kernel_add<<<1, 1>>> (alert) }

kernel_compare_merge (alert) {

Set this thread to a: Alert from alert_queue

If (thread_index is less than alert_queue_size)

If (alert.attributes equal a.attributes)

Send a and alert to Merge_Template phase

Set merge_flag }

New alert

t2< queue size <t1

t1< queue size

Keep previous state

(Process via CPU or

GPU)

Move queue to host

Processing with CPU

Move queue to device

Processing with CPU

End

Yes

Yes

No

Is queue in host?

Is queue in device?

No

No

No

Yes

Yes

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 422

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

4. Cooperative Model

When the size of the alert queue is smaller than

threshold (t0), performance of the serial

algorithm is better than parallel case. Although,

with the increase of the queue length process

time of the serial algorithm increases drastically,

while the parallel algorithm does not. In parallel

case, with increase of the queue length, the curve

is a little steep rises (Figure 5). Therefore, in

order to take advantage of both algorithms, we

use a hybrid model. This model defines two

thresholds, t1 and t2, in such that t1<t0<t2. As

long as the queue length is smaller than t1, CPU

is responsible for processing incoming alerts.

When the queue length is greater than t2,

processing is transferred to the GPU. During

processing an alert on a platform, the alert should

be within that platform. Therefore, concurrent

with the transfer of control from one platform to

another platform, the alert queue must be copied

in its memory. Transferring data between the

host (CPU) and the device (GPU) has an

overhead to the system. Thus, to reduce

unnecessary transfers when the queue size

threshold is near t0, we will define a safety

margin (the distance between t1 and t2). In this

interval, the process is maintained in previous

state. This means that if the queue length is

smaller than t1 initially, with entering the size of

the queue to the safety margin, the host still will

process alerts. As well as, if the queue length is

bigger than t2, with entering the size of the

queue to the safety margin, the device will

process alerts. Figure 4 shows pseudo code of

our approach and in Figure 6, we depict

flowchart of our model. For our experiments, we

used 11,000 as the threshold determined

heuristically by choosing a size and then

analyzing the results of the aggregation process.

With 9 percent safety margin, t1 and t2 will be

10,000 and 12,000.

5. Experimental Results

In this evaluation, the performance of alert

processing in serial and parallel is calculated.

Figure 5 shows output results in terms of

processing time. As shown in the figure, when

the queue length is about 11,000 processing

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 423

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

speed of the host and the device is almost equal.

When the queue size reaches 600,000 alerts,

processing speed of the host is the average of

284 alerts per second, while the processing

speed of the device is equal to 7,453 alerts per

second. It means achieving a speedup of up to

26. In Figure 6, we show results in term of

processing rate. The gray curve in Figure 6

(Mixed mode) shows the processing speed of

the proposed model.

When the queue size is smaller than the

threshold, host processes alerts and when it is

larger than the threshold, the device is used

for processing alerts. The experiments were

executed locally on an Intel CPU with a

2.93GHz clock speed. The Graphics

Processing Unit used was the NVIDIA GTX

580 with 512 cores and the operating system

used was an Ubuntu 11.10. Consider that the

details associated with the operation of both

algorithms are the same, so the results are

comparable.

Figure 5: Processing time of algorithms in CPU and
GPU

Figure 6: Processing speed of algorithms

References

[1] S. Yuan and C. Zou, “The security operations

center based on correlation analysis,” 2011 IEEE

3rd International Conference on Communication

Software and Networks, pp. 334–337, May

2011.

[2] R. Bidou, “Security operation center concepts &

implementation,” avalable at http://www. iv2-

technologies. com/, 2005.

[3] R. Wu and B. Zhang, “Clustering Billions of

Data Points Using GPUs,” UCHPC-MAW’09,

pp. 1–5, 2009.

[4] S. Xiao, Y. Zhang, X. Liu, and J. Gao, “Alert

Fusion Based on Cluster and Correlation

Analysis,” 2008 International Conference on

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 424

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

Convergence and Hybrid Information

Technology, 2008.

[5] H. Waita Njogu, “Using Alert Cluster to reduce

IDS alerts,” 2010 3rd International Conference

on Computer Science and Information

Technology, Jul. 2010.

[6] A. Valdes and K. Skinner, “Probabilistic Alert

Correlation,” SRI International, pp. 54–68, 2001.

[7] D. Li, Z. Li, L. Wang, and M. Roesch,

“Reducing false positives based on time

sequence analysis,” Fourth International

Conference on Fuzzy Systems and Knowledge

Discovery (FSKD 2007), 2007.

[8] H. T. Elshoush and I. M. Osman, “Reducing

false positives through fuzzy alert correlation in

collaborative intelligent intrusion detection

systems ,” International Conference on Fuzzy

Systems, Jul. 2010.

[9] S. Roschke, F. Cheng, and C. Meinel, “A

Flexible and Efficient Alert Correlation Platform

for Distributed IDS,” Fourth International

Conference on Network and System Security,

2010.

[10] G. Tedesco and U. Aickelin, “Real-Time Alert

Correlation with Type Graphs,” in Proceedings

of the 4th International Conference on

Information Systems Security, 2008.

[11] F. Valeur, “Real-time intrusion detection alert

correlation,” Ph.D. dissertation, Univ. Santa

Barbaration, 2006.

[12] F. Valeur, G. Vigna, C. Kruegel, and R. a.

Kemmerer, “Comprehensive approach to

intrusion detection alert correlation,” IEEE

Transactions on Dependable and Secure

Computing, vol. 1, no. 3, Jul. 2004.

Authors profile

Masoud Narimani completed his undergraduate

educations in information technology at

 Payam-Noor University in 2011. Then he passed

the bachelor education in information technology

security at Maleke-Ashtar University of

Technology and then arrived to graduate skills

from 2013. He has one paper about using GPU

power in accelerating alert correlation algorithms

in international conferences. His favorite

research fields are: information security

management, security evaluation, network

security and parallel processing.

Dr. Alireza Nowroozi is assistant professor in

Maleke-Ashtar University of Technology. His

research studies are mainly focused on IT

Security, Crisis Management and Decision

Making. He earned his BS in Software

Engineering from the Ferdowsi University of

Mashhad and his MS in Computer Science from

Sharif University of Technology. He holds his

PhD in Computer Science in Amirkabir

University of Technology. He earned the highest

© 2014, IJOCIT All Rights Reserved Vol 2, Issue 02 Page 425

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Masoud Narimani Zaman Abadi

May , 2014 Volume 2, Issue 2

GPA during MS and PhD education. He stood

first in Azad University’s MS entrance exam in

AI and ranked second in state universities’ MS

entrance exam in Sharif University of

Technology in CS. His PhD and MS students are

now active in security evaluation, network

security and penetration testing.

Payam Mahdinia completed his undergraduate

educations in hardware engineering at Isfahan

University in 2010. Then he passed the bachelor

education in computer architecture at Isfahan

University of Technology and then arrived to

graduate skills from 2013. He has three papers

about using GPU power in accelerating intrusion

detection systems in international conferences.

His favorite research fields are: parallel

processing, network security and computer

architecture.

